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Two types of mathematical models of catalytic surfaces are considered. Condi- 
tions guaranteeing either convergence to traps with all sites occupied by a single 
reactant (poisoning) and or coexistence in equilibrium are established. 
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1. I N T R O D U C T I O N  A N D  RESULTS 

1.1. In t roduct ion 

In this paper we examine a collection of interacting particle systems; we are 
motivated by the study of catalytic surface. Catalytic surfaces are substan- 
ces composed of materials used to accelerate desirable chemical reactions 
which, in the absence of the catalyst, would proceed relatively slowly/1) An 
example with practical applications is the platinum surface used to catalyze 
the reaction 2CO + 02--* 2CO2 (the motivation for accelerating the oxida- 
tion of carbon monoxide is clear in the context of automobile emissions). 
When a CO molecule lands on the surface, a single lattice site is occupied, 
while when an 02 lands, it occupies a pair of sites. Denoting the state of 
adsorption onto the surface by ads, the reactions are 

CO --. CO(ads)  

0 2  --+ 20 (ads )  (1) 

CO(ads)  + O(ads)  ~ C02 

1 AT&T Bell Laboratories, Murray Hill, New Jersey 07974. 
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meaning that when a CO on the surface is near enough to an O, they react, 
forming a CO2 molecule which diffuses from the surface. The system 
exhibits an interesting phase transition. If the partial pressure of CO is high 
enough relative to the 02 pressure, the surface becomes covered by CO, 
and the reaction ceases, whereas for lower CO pressures, the reaction 
proceeds in equilibrium. 

Numerous models of surface catalysts have been investigatedJ 26) An 
idealized description of the two-reactant system is as follows. The reactants, 
which we will call 1 and 2, diffuse in a gas above the surface. At certain 
rates the reactants bond to the surface, which we take to be a lattice. When 
two different reactants find themselves adjacent on the lattice, the 
activation energy for their usual reaction is lowered, and they react at a 
higher rate. The product of the reaction diffuses from the surface, vacating 
lattice sites. This idealization neglects diffusion on the surface, desorption 
of unreacted species, and the possibility that different species may occupy 
different types of lattice sites. 

Such models of the catalyzed oxidation of CO are simulated in ref. 5 
and a mean field description is examined numerically in ref. 2. It is found 
that for high concentrations (high landing rates) of either reactant relative 
to the other, the system "poisons"; that is, it hits a trap where the lattice 
is covered with one reactant. In this case, the reaction rate (the rate of 
production of the product CO2) is zero. For intermediate concentrations, 
the coexistence of the two reactants on the surface is maintained, yielding 
a positive reaction rate in equilibrium. The bad news in this example is that 
the asymmetry in the occupation events, namely that the CO molecule 
requires a single vacant site to land, while the 02 requires two adjacent 
vacant sites, makes rigorous analysis difficult. 

In this paper we study several particle systems which, while devoid of 
this complicating asymmetry, do yield interesting and qualitatively similar 
behavior. The results are established for any dimension; however, the d =  2 
case is the one that the reader should associate with the standard catalytic 
surface. Next we describe the systems that we consider, along with the 
results proven. The proof of Theorem 1 is in Section 2.1, and the proof of 
Theorem 2(i) appears in Section 2.2. The proofs of Theorem 2(ii), (iii) are 
given in Section 2.3, and Section 2.4 contains the proof of Theorem 3. 

1.2. The Systems Considered 

The interacting particle systems which we consider have the state 
space Sa(N)= {0, 1, 2 ..... N} zd with a given number of species N and 
dimension d. We will view sites in the lattice Z a as vacant if a 0 is 
associated with a site, or as being occupied by species (molecule) i if an i 
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between 1 and N at the site. If we denote a configuration by tl, then q(x) 
will denote the state of site x in this configuration. 

The systems have transition rates with the following general structure. 
First, to each species i, 1 ~< i ~< N, is associated a landing rate Pi, which is 
the rate at which species i attempts to land at each site (i.e., the arrival 
times between attempted landings of species i at the sites are independent 
and exponentially distributed with parameter Pi). If the site is already 
occupied, nothing happens. The nontrivial interaction appears when we 
declare that certain species are not allowed to be adjacent to each other; 
if an attempted landing is made which would create a disallowed configura- 
tion, the landing individual and the discordant neighbor are instantly 
removed. This is the aspect which resembles catalytic surfaces--when two 
reacting species occupy adjacent sites, they react very rapidly (for our 
purposes instantly), forming another molecule which diffuses from the 
surface, freeing the previously occupied sites. We study two types of 
systems. 

1.2.1. The Symmetric System. Here the rules are the following: 

0 -~ i at rate pi 
(2) 

/ j ~  00 at rate oo i f i r  j r  i :~j  

where 0 denotes the occupation of two sites which are near neighbors. The 
Pi are normalized so that ZiPs = 1. In all of the systems we discuss, if there 
is more than one neighbor with which a reaction could occur, a neighbor 
is selected with uniform probability among those possible. The presence of 
a rate taking the value oo is a notational luxury, which provides a concise 
way of stating a variety of rates. Alternatively, we could have enumerated 
the possible transitions (for instance, 102--* 100 at rate Pl ,  corresponding 
to attempted landings at the vacant site by species 1). 

Note that there are N traps consisting of the point masses on 
configurations with all sites occupied by species i, 1 ~< i ~ N, which we will 
denote by 6~. When the system is in such a state, it is said to be "poisoned" 
and no reactions can occur. 

1.2.2.  T h e  A s y m m e t r i c  S y s t e m .  Here we consider only a two- 
species system with state space Sa(2), where the usual interpretation of 
vacancy and occupation persists. The transition rates are 

0 --* 1 at rate Pl 

0 ~ 2 at rate P2 

12, 21, or 22 ~ 00 at rate oo 

(3) 
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In this system species 2 reacts with itself as well as with species 1. 
Therefore, the only trap is 31. In a sense, species 1 has an advantage over 
species 2, since fewer occupation transitions are prohibited. 

1.2.3.  R e m a r k  on  C o n s t r u c t i o n .  A graphical representation for 
any of the systems above can be constructed in the following manner: 
Picturing a temporal axis emanating from each site in Z d, along each axis 
we deposit a sequence of -i's as a Poisson process with parameter pi for 
each species i: 1 ~< i ~< N. Each ~ represents the (attempted) landing at the 
designated site by species i. If a o~ appears at a vacant site, and if no 
neighbors are, occupied by species other than i, the site becomes occupied 
by species i. If neighbors exist which are occupied by another species, then 
one is selected randomly and vacated. A o~ landing at an occupied site does 
noting. 

Note that the action of any ~ is confined to the designated site and its 
2d neighbors. Two neighboring sizes x and y are said to be connected in 
the graphical representation in the time interval [0, ~] if a ~ occurred at 
one of the sites before ~. The construction of the process follows using a 
method due to Harris. (7) The idea is to select the time interval z small 
enough so that with probability one all connected components of the 
graphical representation are finite. The process is then well defined on the 
initerval [0, "c], and the procedure can be iterated to construct the process 
for all time. 

1.3. Results on the  S y m m e t r i c  S y s t e m  

The first result states that in any dimension, the only invariant 
measures in the two-species case ( N = 2 )  are the traps 61 and 32, except 
possibly at Pl = P2 = 1/2. The second result deals with a general number of 
species, and establishes conditions under which trapping (poisoning) or 
coexistence will occur in equilibrium. 

T h e o r e m  1. Consider the two-species system N =  2 in any dimen- 
sion. For P l r  1/2, the only invariant measures are linear combinations of 
31 and 3 2. 

T h e o r e m  2. Consider the N-species symmetric system in any 
dimension starting from a nontrivial measure (one with support on 
configurations with an infinite number zeros). 

(i) There exists an el > 0 so that if pi > 1 - el, then ~/, converges in 
distribution to 3~. 

(ii) If p~< 1/(2d2c(d)+ 1) [where 2c(d) is the critical value for the 
d-dimensional contact process; see Remark (d) below], then the system 
does not converge to 3,-. 
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(iii) There exists an integer Nd so that the number of species N 
exceeds Nd, then there exists an invariant measure with support on 
nontrivial configurations for values of (Pl ..... pu) ~ C, where C is a region 
of positive volume in [0, 1] d. In other words, coexistence is possible in 
equilibrium. 

Remarks. (a) Theorem 1 implies that coexistence in the two-species 
system in equilibrium is impossible, except possibly at the critical point 
Pl = P2 = 1/2. 

(b) An examination of the proof of Theorem 1 shows that for any 
N~> 2, if Pi > 1/2 for some i, then the only extremal invariant measures are 

t~ N . (In the proof give species i a charge of + 1, and all other the traps { i}i= 1 
species -1 . )  This precludes coexistence in equilibrium. 

(c) Part (ii) is used to obtain (iii) in the following way. If the number 
of species is selected large enough for a given dimension d, then each of the 
Pi can be selected so that Pi < 1/2d2c(d) + 1 under the constraint Z Pi = 1. 
Coexistence occurs since the system can never reach any 6i. For example, 
consider d =  1, where it is known rigorously (8) that )~c(1)<2. In this case 
if we choose N~> 5, then coexistence can occur (take a neighborhood of the 
point {p i=  l/N}). 

(d) The contact process on Z d is a stochastic growth model where 
each site is either occupied or vacant./9'a~ Occupied sites die (become 
vacant) at rate 1, and give birth at rate 2 to each of their vacant neighbors. 
2c(d) is the threshold below which the process becomes extinct and above 
which the system is supercritical. 

1.4. Results on the Asymmetric System 

Recall that the asymmetric system has only a single trap 61. 
Theorem 3 shows the existence of a phase transition in the asymmetric 
system, by establishing conditions under which the system traps and condi- 
tions for which coexistence occurs in equilibrium. This theorem is closely 
related to Theorem 2 for the N-species symmetric system, and in fact one 
can think of this system as the large-N limit of the symmetric system. To 
see this, consider the case where P2 . . . . .  pu=(1--pl)/(N--1),  and 
group species 2,..., N together as a new species 2. When N is large, the rate 
of landing events which fill adjacent sites with the new species 2 is small. 

Theorem 3. Consider the asymmetric system in any dimension 
with a nontrivial initial distribution. 

(i) There exists a n  e2>0 SO that if p l > l - - e 2 ,  then the system 
converges to the trap 61. 

822/61/5-6-9 
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(ii) If Pl < 1/2d2c(d)+ 1, then the system does not converge to 31, 
implying coexistence in equilibrium. 

2. PROOFS OF T H E O R E M S  

2.1. Proof of Theorem 1 

Assume that Pl > 1/2 + ~, for any ~ > 0. Take a positive function ~(x) 
such that Zx~zd e ( x ) <  oe. Consider the test function 

Q = ~  ~(x)q[ t / (x) ]  (4) 
x 

where 

1 if n = l  

q(n) = 0 if n = 0 

- 1  if n = 2  

(5) 

We have given positive "charge" to species 1 and negative charge to 
species 2. If a 1 hits a vacant site x, Q changes by either ~(x) or one of 
~(x + ei), i = 1,..., d, where the ei are unit vectors. Similarly, if a 2 lands at 
a vacant site, Q changes by -c~(x) or - ~ ( x  + e~). Define 

0~mm(X ) ~ -  min(~(x), ~(x + el)) 

~max(X) = max(a(x), ~(x • el)) 

A(x) = ~max(X) -- ~min(X) 

(6) 

We now see that 

dE{ Q } ( 
E ~ E  [ Pl ~min(x) -- P2 0~max(X)] 1 {r/(x)= o} 

dt �9 . 

2 [ --  1A(X) -~- 2~min(X)]  P(tl(x) = 0) (7) 
x 

where E(Q) denotes the expectation with respect to an invarlant measure, 
and 1A is the indicator function, which takes the value 1 when the event A 
occurs and zero otherwise. So, requiring A(x)< 4e~mm(X) makes dE{ Q }/dt 
> 0 unless the system is poisoned. It is easy to find an appropriate ~(x). 
Take, for example, 

~ ( x ) = e  ~lxl ,  where /?<~ (8) 
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where Ix[ is the L1 norm. Since e was arbitrary, we see that for any Pl > P2, 
no invariant measure has support on configurations with any 0's. There- 
fore, the only invariant measures are convex combinations of 61 and 32. 
The same result holds for Pl < P2 by symmetry. 

2.2. Proof  of  T h e o r e m  2, Part  ( i )  

The goal is to show that if Pl is chosen large enough, and if the system 
is started with a nontrivial initial distribution, then the distribution of the 
system converges to 61 almost surely. The plan is to construct a discrete- 
time set valued process which will function very much like the dual process 
for the biased voter model discussed in ref. 11, which essentially is treated 
like a random walk with drift. In our case the situation is considerably 
more unpleasant, since the nature of the dual process requires that we 
control a branching random walk. The tactic is to compensate for the 
branching mechanism by a strong drift toward the origin when P l is large. 

2.2.1. A Resul t  on Branch ing  R a n d o m  Walks .  We begin by 
discussing a useful discrete-time branching random walk. At each time step, 
every particle is replaced by a set of particles. If a particle is at site x at 
time step n, then it is replaced at time step n + 1 by the set x + B with 
probability Px(B) (here B c Z a and x + B is the translation of B by x). Our 
process will have the property that 

P= ~2 [BIPx(B) (9) 
B c Z  d 

is independent of x (IBI denotes the cardinality of B). 
Denote the configuration of this process starting from a single particle 

at x after n time steps by Z~, and the number of particles at site y by 
Z~(y). Let re(n, x, y )=E{Z~(y)}  and let S x denote the random walk 
starting at x with transition density 

p ( x , x +  y)=-i ~ Px(B) (10) 
P B ~ y  

The following result is used in the proof of Theorem 2(i). 

Lemma 1. m(n, x, y) = pnP(S~ = y). 

Proof. A property of the branching random walk is 

m(n,x,y)= ~ Px(B) ~ m(n-l,x+z,y) (11) 
B c Z  d z ~ B  
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Substituting the proposed solution into the right-hand side yields 

pn-1 2 ~ P~(B)P(SX+_~=Y)=P~P 
z B ~ z  z 

P(s. 1 - y )  
z 

= p "  Y, p (x ,  x + z)  = y )  
z 

= p"P(S  = y )  (12) 

completing the proof. 

2.2.2.  T h e  Dual  P r o c e s s .  We begin with a few words of motiva- 
tion. We want conditions on ~/H--1 which guarantee the presence of a i at 
site x and time n [i.e., qn(x)= 1]. We reverse time and discretize it into 
unit intervals denoted by Ik = [ k -  1, k]. In the original process this inter- 
val corresponds to times in [ n -  k, n -  k + 1 ]. We denote the landing of 
any species 2 to N by an x.  In one dimension, for example, suppose that 
during 11, x landings occurred at z + 1 and at z + 2, but not at z -  1 or 
at z + 3. If we insist that l's be at all three sites z, z + 1, and z + 2 at the 
end of I1 [that is, q ,_ l ( z )=~ /H_l (z+  1 ) = q ,  1 ( z + 2 ) =  1], then we have 
guaranteed that ~/H(z)= 1. Similarly, suppose that at least two .1's landed 
on site z during 11. Further, suppose that no x 's  landed at site z or any 
of its neighbors during this interval. Then we could merely ask for a 1 at 
any single neighbor of z at the end of 11, and this would guarantee that 
qn(z) = 1. We could select the neighboring site so that it is closer to the 
origin, and thus create a drift toward the origin in the dual process. 

We will now make this precise. Associated with each site x and each 
time interval I~ are the following the following independent random 
variables. {T~(x, n)}Zd_l are exponentially distributed with parameter Pl. 
We let S(x,  n ) =  Z~  d i Ti(x, n). The S is supposed to be the time elapsed 
after t = n - 1 until 2d ~ landing have occurred at site x. We let U(x, n) be 
exponentially distributed with parameter q =  1 - p m ,  denoting the time 
elapsed after t = n - 1 until the first x landing at x. 

Next we define the dual process starting at site x, which we denote by 
q~. Suppose that Yl~ 1 = A c Z d. To find q~, we perform two steps in order: 

(i) Let ~ ,  = {z: U(z ,n )<  1 } be the set of all points which experienced 
an x landing during the time interval I , .  Let X,(x,  B) denote the 
following event: first, for all y e x + B ,  y eg2n; second, there exists a 
nearest-neighbor path (in the site percolation sense) in Qn from y to any 
neighbor of x; and third, ~ ( x + B ) c ~ s  [where ~?(R) denotes the 
boundary of R]. The first step in determining q~ is: for  each z, i f  z ~ ~I~- 1 
and ~Ar.(z, B) occurs, then replace z with z w B. 
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(ii) ~ ( z )  = {S(z, n) < 1 and U(z, n) > 1 }. For any site z, we select 
some (possibly random) subset J(z) of its 2d neighbors and itself. The 
second step is: if z ~ 0~-1 and J/~(z) occurs, select y uniformly from J(z) and 
replace z with y.. 

As discussed earlier, if 0~ hits only sites which are initially occupied by 
l's, then q(x)=  1, because, as is easily checked, at each time step all 
unpleasant x landings are rendered harmless by the presence of a 1 at the 
target site. Therefore, we have the useful statement 

P(O~cA)<~P(qA(x)= 1) (13) 

where t/A denotes the system started with all sites in A occupied by l's, 
and all other sites in any consistent configuration. When Pl is large, the 
common events are the drift events in the second step, and the branching 
events in the first step are rare. This means that the particles drift toward 
the origin with an occasional branching event. Additionally, there is at 
most a single particle per site in the 7/process, so that when events X or 
J / / a t  different sites place particles onto the same site, the particles coalesce. 

2.2.3. A Branching Random Wa lk  Upper  Bound on ft. In 
view of the preceding statements, we now define a process ~x which 
dominates the dual 7/~, and in doing so we will describe a coupling between 
the two processes. First, define 

H(z )=  {y: l y - z l  = 1, and HylI2< [Izll2, or z i = 0  and ye = I} (14) 

The rules of evolution are simply the rules described in the section 
preceding Lemma 1, where the offspring distribution is given by: 

1. If B = {y} with y e H(z) - z, then Pz(B) = (l/d) P(Y~(z, ~ ) )  
P(Jgn(z)). 

2. If B =  {0}, then Pz (B)=P(~ ( z ,  ~ ) ) [ 1 - P ( J ~ ( z ) ) ]  

3. If B =  {0}wA, A ~ ,  then Pz(B)=Pz(Y~(z,A)). 

4. Otherwise, Pz(B)=O. 

Below the ~'x process we will construct a version of the original 0 x 
process in such a way that O~(z) = 1 ~ ~',~(z) >/1. To do this, we first note 
that one way to construct the branching random walk ~'x is to associate 
with each particle in ~x its own set of independent random variables 
analogous to S(x, n) and U(x, n) in the ~/x process. 

We index particles at time n by L, :  I~<L,~<Am, where N~ is the 
number of particles at time n. Recall that if a particle at site x at time n - 1 
is replaced by the set {x} at time n, we think of this occupying particle as 
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being an offspring even though it occupies the same site as the parent; so 
all particles at time n are in the nth generation. Also, let XLo be the position 
of particle L,.  For particle L, ,  let {T L~ 1 be independent exponential 
random variables with parameter Pl,  and S L " = Z ~ j  T L'. Let UL'(z) be 
exponential with parameter q = 1 - Pl for all z ~ Z d. 

(i) Let OL ={Z:  UL'(Z)<I},  denoting those sites for which U L" 
occurred before time 1. Let NL, be 

YdL, = XL, U {Z : Z --* n b r ( x J  in Or, } (15) 

where nbr(x) denotes the 2d nearest neighbors of site x. Add one particle 
to each site in NL, for each L,.  

(ii) Let • L =  {SL~ 1, UL"> 1}. If ~L.  occurs, select a neighboring 
site z from H ( x J  and replace xL, with z. 

This constructs ~'x. We proceed to construct f#x. Our goal is to assign 
random variables S(x, n) and U(x, n) for each x ~ Z a. In particular, we will 
want to know ~2,= {x: U ( x , n ) < l } .  To do this, we enumerate the 
following steps. 

1. Order the particles in ~. 1 by location lexicographically. Denote 
this ordering by {xa,..., XN, ~ }. 

2. At each xi order the particles in ~-x ~(x~) according to 
lexicographic order of the parents (then the grandparents, etc.). Let e~ 
denote the lowest. 

3. Starting with the particle at x~, consider f2e~ and ~e~ in the ~ 
construction. We declare that: 

(A) ~,___ ~ ,  

(B) a .  ~ O(~e,) = ~ 

4. Iterate through the set {Xl,..., XN, ~}, using, instead of ~e,, the set 

Ce,-~- ~/Jel ~e ,  ('3 ~ek .~ ~?(~J~k) ( 1 6 )  
k 1 k = l  

In this way we never interfere with previously assigned events (times). 

5. Fill all sites in ~j~ C~, with l's. 

6. Assign all other U(z, n)'s i.i.d, exponential with parameter q, and 
assign S(z, n) by S e' if z = x; for some i, or i.i.d, as before. 

7. Let ~/~ei = {sei< 1, uei> 1}. If Jg~ c~ { ~ e =  {X~}} occurs, replace xi 
with a site z chosen uniformly from H(x,). Note that if U(x~, n) < 1, we still 
have x i occupied at time n. 
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8. If J//,c~ {Ne=  {x,}} does not occur, but {U(xi, n ) >  1}, then let 
J(xi) = {xi} in step (ii) of the construction of q. 

This constructs ~/x ~< ~'x. 
We now make a statement regarding bounds on the maximum 

possible jump size of the associated random walk S~. 

Lemma 2. We have 

1,  L,. Cexp{ L,ogl,2  l, ] t ,17, 
where 0 =  1 - e  -q (where q =  l - p 1  is the cumulative landing rate of 
species 2 through N). 

ProoL From examination of the transition density, the probability 
that the jump size exceeds L is bounded above by the probability that there 
exists a self-avoiding path of length L from the origin in the associated 
Bernoulli site percolation problem with occupation density 0. This is 
bounded above (using standard counting methods) by 

d(2d-  1) L lqL (18) 

which implies the desired result. 

2.2.4. T h e  R e n o r m a l i z a t i o n  Scheme. The goal is to show that 
if the system finds that it has filled some large box with l's, then with 
probability close to one it will fill an infinite sequence of boxes with 
exponentially growing dimension. To make this precise, for some presently 
unspecified fl and #, define 

flk = 2kfl, s~ = fl___~k (19) 

and let R k =  {x: ]lxlt2 ~< fig}" It is presumed that fl and # are selected so that 
the above quantities are integers. The sk represent time increments, so that 
the real time elapsed through level k is tk = Sl + ... + sk. The proof of 
Theorem 2(i) will be complete upon showing the following. 

L e m m a  3. There exist numbers Pk(fl) with Z~=I  pk(fl)--*O as 
fl ~ 0% and a value of # so that 

P(r/~ k-1 75 Rk for some t ~ [sk, sk + sk+ 1] ) ~ Pk(fi) (20) 

ProoL We begin by using the dual process. Recall that t/A denotes 
the system started with A occupied by l's, and ~'~(A) denote the number of 
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particles in the branching random walk in set A at time n, starting from a 
single particle at x. We know that for any x e Rk and any integer n 

e ( x C q ~  k ~ ) ~ P ( ~ I ~ c ~ R ~ _ ~ )  

~< E{~'X(R~_ 1) } 

= p"P(S~ ~ R;_  ~) (21) 

where the last step followed by Lemma 1. We first show that if Pl is large, 
then for large n, the probability that S~ is farther than R from the origin 
dies exponentially in R. 

I . emma 4. Consider a discrete-time process starting at c~, denoted 
by Z,]. Suppose that, for some ~ > 0: 

(i) P(IZ~+,-Z~,[  >,L)<~ Ce ~1. 

(ii) E{Z~,+I-Z~,[o~} <~ - v - e  when Z,~>~0 (Y, is the filtration up 
to time n). Then, 

P( Z ~. >>- y) <~ Ke-aY[1 + e -a(v"/2 ~)] (22) 

where K and 6 depend only on e, v, C, ~, and ~c. 

Proof It is sufficient to show 

E{e az~ } <~ Cal l  + e -a( '"/2-')] (23) 

since by Chebyshev's inequality we have 

P(Z;  >1 y) = P(e az~, >~ e Oy) <~ e-~ ~ } (24) 

In turn, to show (23), it is sufficient to show 

E{e ~ } ~< (I -- 6v) E{e ~z".} + 6v + M (25) 

for some constant M. It is easy to check that (25) implies that for small (5 

, 6 v + M  
E{e ~ } <-% (1 - (sv)" E{e ~ + ~  [1 - (1 - 6v)"] 

(sv + M 
~ e  In l~ ~176 q- �9 (5 v (26) 

where we used the fact that A~)=a. Finally, linearizing the logarithm for 
small (5 yields the desired result if Co is large enough. 
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We now establish (25). We have 

E{eaz:+l_ e~Zl} = E{eaZ~[e~(Z~+ 1 z,~)_ 1] } 

=E{e~g:E{e ~(Z:§ l l~}} (27) 

On {Z~ ~> 0}, when 6 is small [linearizing the exponent and comparing to 
(ii)], we have 

E{e6(Z~,+l z : /_  1 I ~ }  ~< - 6 v  (28) 

Finally, on {Z~<0},  (i)yields 

E{e ~(z;§ z ; ) -  1} ~< e ~ ' C e - K Y d y = M < o e  (29) 

for small 3. Putting this all together, we have that the right-hand side of 
(27) is bounded by 

E{e~Z:[ - 3 v l  {z:~ Eo, + ~ }  + M1 {z:~ (-~.o)}] } 

<<. E{ - 6re ~z~" + (3v + M)  1 {z~ ~ (_ ~,o)) } 

<~ - 6 v E { e  ~z~ } + 6v + M (30) 

where we have used 

E{e ~z~, 1 {z~ (- ~,o)} } ~< 1 (31) 

This completes the proof of Lemma 4. 
Before establishing Lemma 3, and therefore Theorem 2(i), we will use 

Lemma 4 to bound the probability that S~ is far away from the origin. 

Lemma 5. Let Z . - I I S ~ l l 2 - 7 ,  with ~ =  Iix112-7. 

(i) If 7 is large enough, then for some ~ > 0, then there exists a 0 > 0 
so that if Pl > 1 - 0, then 

E{Z~+,-Z~I~} ~< - v - ~  (32) 

on {Z~/> 0}, where v = c/d, some c > 0. 

(ii) For any a > 0 ,  there exists a ~b>0 so that if p~> 1 - r  then 
p < l + c r .  

ProoL The proof of (i) is very similar to the corresponding statement 
in ref. 11. In particular, the drift toward the origin is minimized when the 
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random walk is on one of the axes. When 7 is large, this drift is 
asymptotically 

where 

- -  - f ~ L e  ~ L  1p(S(x ,n )<l ,  U(z,n)> l Vz:lz-xt<<.l)+C jo dL (33) 
d 

1 
s: = log ( 2 d -  1 )(1 - e--(1 --Pl)) (34) 

If Pl is close enough to 1, the first term exceeds the second, implying the 
result. 

The proof of (ii) is even easier, since the expected cluster size in site 
percolation diminishes to zero as occupation probability vanishes. There- 
fore, as Pl increases to one, the mass is moved to sets B with [BI = 1, and 
p ~ l .  

We now prove Lemma3. For any x~Rk  and any integer 
n ~ [sk, sk + sk + 1] we have 

pt,..~,Rk l'l~'r p ( ~ x ~ c  ~ (35) 

We bound the first term on the right: 

p(sk+sk+~) <~ (1 q- tr) (2k+ 2k+1)#/" ---- (1 + O') (3~/~)2k 

= exp {/32k [~  log(1 + ~)]  t (36) 

Next we bound 

p ( S ~ R ~  1)=p(lIS~ll2>2 k 1/3) 

~< Kexp( - 6 2 k -  2/3) { 1 +exp  - 6  v --2k/3 (37) 

where we have taken 7 large enough to use Lemma 5, and then set/3 > 27. 
In using these results, we have taken 6 positive, but as small as necessary. 
We can now reduce # so the the second exponent in the last line is 
negative. Finally, we can take a small (by making Pl large), so that the 
right-hand side of (35) is decaying exponentially in k and in/3 as 

P(x ~ rlff ~ ') <~ 2Ke-flzk-26/2 ~ .  2Ke -~2k-3~ (38) 
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It is clear that a trivial modification in the first step of the dual process 
qx and the dominating ~'x process yields this bound for any real 
t~ [sk, sk + sk+ 1]. 

We need to show that if fl is large enough, then with high probability 
all sites in Rk are occupied for all t e [sk, s~ + sk + 1] starting from R,  1. 
Note that if x r  ~ l, then with probability exceeding e P~, x remains 
unoccupied by a 1 during It, t +  1]. Using this fact, and letting llI denote 
the Lebesque measure of a se t / ,  then for any x E Rk, 

P(xCrl t  &-I some t e  [s~., Sk + Sk+l])e  pl 

~ E { t { t ~  [Sk ,  S k ~ -Sk+  1 ~- 1]: xCr / f  k ~}1} 
~<2K(l+sk+l)e  2~-3~ 

Consequently, 

(39) 

P(t/Rk-, 75 Rk some t e [ s~, s k + sk + 1 ] ) ~< 2 I Rkl e P'K( 1 + sk + 1 ) e -- 2k -3 ~c5 

(40) 

which establishes the existence of the desired Pk(fl), upon noting that the 
exponential growth of IRk[ ( l + s k + l )  is much slower than the super- 
exponential decay of e x p ( -  2 k-  3fl6). This completes the proof of Lemma 3, 
and of Theorem 2(i). 

2.3. Proof  of  Theorem 2, Parts (ii) and (iii) 

Proof  o f  Theorem 2. (ii) (take i =  1 for definiteness). We will show 
that species 1 does not poison the system, by a coupling argument with a 
contact process. Notation is as follows: configuration of the N species 
system will be denoted by q e Sd(N), those of a recoding of this system (to 
be described) are (~  {0, 1} za, and those of the contact process are 

{0, 1}< 
The first step is to map any configuration q into a configuration (: 

f0  if i = 1  
( ( x ) = f [ q ( x ) ]  where f ( i ) = ~ l  i f i = 0 o r 2 < ~ i < ~ N  (41) 

Thus, a site in ( is considered to be occupied if the same site in r/ is 
occupied by any of species 2 through N or if it is vacant. If species l 
occupies the site in 7, then the corresponding site in ( is vacant. It is also 
worth noting that if a 1 is next to a 0 in the ( process, then the 1 must 
represent a 0 in the original r/process. 

The next step is to construct a graphical representation for the evolu- 
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tion of the recoded process ~, derived from the rates which prescribe the 
evolution of the original process t/. We use the graphical representation 
described in Section 1.2. We will write the ol's as x's, however, to 
distinguish their effects. 

This graphical representation is a way of viewing the evolution of the 
N-species system. The recoding through f induces an evolution of the 
configuration. In the recoded process, l's give birth onto O's at a rate of at 
least (P2 + "'" + PN)/2d, which corresponds to the worst case of a vacant 
site in the original process with all neighbors occupied by species 1. 
Additionally, x marks turn l's in ~ into O's only if the recoded 1 corre- 
sponded to a 0 with all neighbors either vacant or occupied by species 1. 
Consequently, the maximum rate at which l's turn to O's in the ~ process 
is Pl. 

Furthermore, and of primary importance, the graphical representation 
induces a coupling between the evolution of a contact process ~. and the 
recoded system ~ in such a way that if ~0(x)>~0(x ) for all x, then 
~t(x) >/G(x) for all x at all subsequent times t > 0. In the contact process 
3, we prescribe that x's turn l's into O's, and any ~ that hits a 1 turns a 
randomly selected neighbor into a 1 (if it was not already a 1). This contact 
process has death rate Pl, and birth rate (P2+ "'" +pN)/2d---(1-pl)/2d 
to each neighbor. It can be explicitly checked (there are only five 
possibilities) that no transitions are possible from a configuration in which 

/> ~ that would create a site x at which ~(x) -= 0 and ~(x) = 1. 
Therefore, if the ratio of the birth rate to the death rate exceeds 2c(d), 

then the contact process ~ is supercritical, implying that the ~ process is 
also supercritical. Recalling the mapping f :  q --+ ~, this means that when we 
start with a nontrivial initial distribution (i.e., with an infinite number of O's 
in the original ~/ process), then there are always sites occupied by 
{0, 2, 3, 4,..., N -  1}, implying that the system cannot trap to 61 (see ref. 10 
or ref. 9). 

Part (iii). Since 2~(d) < ~ (and is, in fact, nonincreasing in d), there 
exists an integer Nd so that the set of solutions of 

1 
P' ~< 2d2c(d ) + 1 Vi, ~ p, = 1 (42) 

is a neighborhood of the point {Pi= 1/N}. In this neighborhood, by the 
proof of (ii), if we group any N - 1  of the N species together with O's, 
calling this resulting group species A, this process dominates a supercritical 
contact process. Now start the system with a nontrivial translation- 
invariant measure /t and with the values of the Pi selected in the 
neighborhood described above. 
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The process q, is clearly Feller, and the state space {0, 1,..., N} z~ is 
compact. Therefore, denoting the semigroup of q, by S(t), we have that the 
Cesaro average (1/T)~#S(t)dt converges along some subsequence 

T { n}n=l with T n ~ o o  as n ~ .  The limit is an invariant measure (see 
ref. 9), which we will denote by v. Let 

I= {q e sd(s): Ix: ~/(x) = 0[ = oo } 

F= {q ~ Sd(N): 0 < ix: r/(x) = 01 < oo } (43) 

Z= {qeSd(N): Ix: q(x)=01 =0} 

Now, v(F)= 0 by translation invariance. Additionally, configurations on Z 
consist of {r/: t/(x) = i Vx} for some 1 ~< i~< N. Therefore, v(-]Z) = ZN=I ci6i 
with ci ~> 0 and c~ > 0 for some j unless v(Z)= 0. Assuming that v(Z)> 0 
and, without loss of generality, that Ca > 0, then 

v(61) ~ cl v(Z) (44) 

However, if we let A = {0, 2, 3,..., N}, we know by comparison with the 
associated supercritical contact process that v(6~)=0, contradicting the 
assumption that v(Z) > O. 

We are left, therefore, with the conclusion that the support of v is L 
the set of nontrivial configurations. 

2.4. Proof  of  T h e o r e m  3 

The proofs of the two parts of Theorem 3 are essentially identical to 
those of the corresponding part of Theorem 2. 

Part (i). This follows directly from the argument used in the proof of 
Theorem 2(i). 

Part (ii). Here, as before, we couple the system to a contact process. 
In this case we consider to O's and 2's to be alive and the l's to be dead. 
We will denote a configuration of the original asymmetric process ~/, of the 
recoded process (, and of the contact process by ~. We see that 

{~ if q(x) =0,  2 (45) 
~(x)= if q(x)=l 

Now consider a graphical representation which couples the asym- 
metric process to the contact process, where a • represents the arrival of 
a 1 for the catalyst and a death mark for the contact process. A �9 represents 
the arrival of a 2 for the catalyst and a birth mark for the contact process. 
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Birth marks behave identically in the two systems: if you are already alive 
you stay alive, and if there are dead sites adjacent to you, you select one 
at random which becomes alive. Death marks, however, can behave 
differently. If a death mark hits a 2, it does not die, and if it hits a 0 that 
a adjacent to a 2, the 0 will not die. 

Using this coupling, and denoting configurations at time t, by a sub- 
script t, we see that if initially ~o(X)>~ ~o(X), then ~,(x)>~ ~t(x) for all t > 0. 
Then the rest of the proof goes through as before. We get the same bound, 
that is, if p 2 / 2 d p l  > 2c(d), then the contact process ~ is supercritical, and 
therefore the ~ process is, too, implying that 2's and O's persist. Noting that 
P z  = 1 - p j  completes the proof. 

2.5. Conclus ions  

We have examined two types of models of surface catalysts, and we 
have shown that under certain conditions these idealizations exhibit both 
types of behavior found in real systems. Namely, if a single species lands at 
a high rate, the system will trap to a configuration with all sites occupied 
by that species, whereas if the landing rates are comparable, then 
coexistence in equilibrium occurs. 

A limitation of these results is that the landing events involve the 
vacancy of a single site. In these models there is no coexistence in the 
physically most relevant two-species symmetric system. To prove 
coexistence, we must either resort to a fairly large number of species (that 
is, five), or require that one species interact with itself. (We should perhaps 
note that we have performed computer simulations which show that five 
species is not a strict bound. Even the N =  3 symmetric case can show 
coexistence if the p~ are chosen within about 0.1 of 1/3.) It seems clear that 
some asymmetry is necessary for a two-component system to show 
coexistence in equilibrium, and a desired improvement would be to show 
coexistence in a less artificial two-component system, perhaps the CO, 02 
model described in the Introduction. 
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